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Abstract—In some technically important structures, finite prebuckling displacements have a profound effect
on the bifurcation load. To ignore these displacements, as is done in most instability analyses, is to invite
major errors, usually on the unsafe side. A method is presented which approximates this effect without the
necessity of solving nonlinear equations. The general theory is developed for any elastic body under
conservative loads. The governing equations are subsequently discretized by a finite element approach and it
is shown that for planar framed structures, the second order approximation to the buckling load can be found
in terms of the standard linear and geometric stiffness matrices of structural analysis; the solution procedure
does not require iterations. For illustrative purposes, a computer program was developed for planar
structures and the results are compared to the exact solution for the buckling of shallow circular arches.

1. INTRODUCTION

In the static approach to the solution of bifurcation problems in stability, one determines whether
or not more than one configuration of the structure exists under a given load. For simplicity, let
this set of loads be characterized by a single load parameter A, so that a path can be drawn in
load-deflection space. As the load is increased, the relationship between this single load
parameter and the corresponding displacements define a fundamental path. The bifurcation point
is then identified by non-uniqueness of the fundamental path in the neighborhood of known
equilibrium solutions. Mathematically, bifurcation is associated with a loss of the positive
definiteness of the total potential energy in an infinitesimal excursion from equilibrium, provided
that the external loads are conservative.

The equations governing the stability problem are obtained by examining the terms of the
total potential energy which are quadratic in these ‘“‘additional” displacements or their
derivatives. The general theory set forth by Koiter[1] and later reworked by Budiansky[2] is a
perturbation technique for finding other solutions to the equilibrium equations in the
neighborhood of the fundamental path.

Typically, the prebuckling displacements are neglected in this procedure. This works well for
many engineering applications. However, there are technically important examples where this is
not the case. Neglecting the prebuckling displacements often leads to errors which are not on the
conservative side.

The displacements prior to and at buckling may be expanded in a power series in the loading
parameter A. Thompson(3] and Kerr and Soifer[4] have demonstrated that serious errors can
result when the fundamental path is linearized. The most desirable approach is to superpose the
additional, infinitesimal displacements of the buckling mode onto the possibly large
displacements prior to buckling. However, this, as expected, leads to computational
complexities. Fitch[5], and independently Cohen[6], have further generalized the work of
Budiansky[2] so that a linearized prebuckling state and negligible prebuckling displacements
need not be assumed. Cohen and Haftka[7] attempted to retain these features and yet keep the
efficiency of a linear analysis with their “modified structure” approach. The method, based on
Koiter’s imperfection theory, was successful in simple nonlinear cases. Gallagher[8] has
employed a discrete analysis using a piecewise-linear fundamental path.

Masur and Schreyer[9], on the other hand, have developed a method for incorporating the
effects of prebuckling displacement directly, without a progressive iterative solution. The
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computational effort in this procedure is reduced considerably. The method utilizes a power
series expansion of the prebuckling state as well as of the buckling parameter and mode; hence
the degree of accuracy is dependent on the number of terms retained. The inclusion of
prebuckling displacements along a general fundamental path to the point of bifurcation without
mathematical complexities results in improved solutions to problems where the prebuckling state
is not trivial. In the present investigation. the method of Masur and Schreyer is applied to a
discrete model analysis.

2. DEVELOPMENT OF PRE-BUCKLING EQUATIONS

An elastic body occupying a volume 7 bounded by S is deformed so that a generic point P in
the reference state displaces to P*. The stability of the deformed configuration is to be
investigated, Let a, be the Cartesian coordinates of the reference state and let X, be the Cartesian
coordinates of the deformed state. The displacement field is given by

i =X, —a. (h
In what follows, derivatives are with respect to the original state. and are indicated by
( ): = d( )/ da;, while a repeated index will imply a summation.
The Green strain tensor is given by

1
€; = MUy + Ui, + Ualh,)) 2

while the corresponding Kirchhoff-Piola stress tensor of the second kind is

_ {fafda
S = J<3X5)<3X;) ay (3)

where J is the Jacobian for the transformation between the current and original coordinates, and
a; is the physical (Cauchy) stress tensor. The equations of equilibrium are

Sii (S} =0 inT (4)

and the associated boundary conditions for the problems considered here are
S;jn,- + Sk;ui‘,-nk — AT, = 0 onSs (5)

and

u, =0 onS. 6)
Here n; is the unit normal in the initial state, T, are applied surface tractions, S and S, are the
traction-specified surface and displacement-specified surface, respectively, and A is a
multiplicative load parameter. Following Masur and Schreyer[9] we assume that the equilibrium
stress S; and the corresponding displacement field u; can be expanded near the unstressed state

in terms of the load parameter A, in the form

Sy= ASH +ASF 4+

{7)
we= A"+ A 4
If we substitute eqn (7) into eqns (4)-(6), respectively, we obtain
MSE+AHSL+H(SWuia}+--- =0 inr (8

MSPn, - T3+ A4S + SPuln}+--=0 onSr 9)
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and
/\ui(1)+ )\2ui(2)+ -oo=0 onS,. (10)

Since eqns (8)-(10) are valid for all values of A, the coefficient of each power of A must vanish
individually. The following stress equations then are obtained

M _
Sii=0
2y _

ST =-(Si§u)« etc., in7 (1

which are associated with the boundary conditions

SP'n,-T, =0
SPn+ Sullm =0 etc, onSr (12)
and
u’=0
u®=0 etc., onS. (13)
We will use the elastic constitutive relation
Sy = C yu€u (14)
By eqn (2) and the symmetry of the stress tensor, eqn (14) becomes
Si = Cipeltis + 1/2Um iclm.s). (15)

If the elastic stress—strain law is written in terms of the stresses and displacements expanded in A,
as given in eqn (7), it follows that

ngn = Cijklugcl.l)
ST = Cuuia + 12ulmitt'ny),  etc. (16)
Equations (11)~(13) and (16) provide the description of the deformed state at which the

stability of the body is to be investigated. The equations corresponding to the first power of A in
the above system of boundary value problems are those of linear elasticity theory.

3. FORMULATION OF STABILITY PROBLEM

Let u® be the displacements corresponding to an equilibrium state, and v be the displacements
from this equilibrium state to a neighboring, geometrically admissible state. The potential energy
in the equilibrium state is given by

m=1/2f (sgeﬁ’j)dT—j Tl dS. (17)
T St
Equilibrium requires that

awo=J' %%, dT—J' Tu dS = 0. (18)
T St

The linearized variation of eqn (2) is

8€; = 3y + M) + 3k + TUR M (19)
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where 7, = 8u; is any kinematically admissible displacement field. Equation (18), upon
substitution of eqn (19), becomes

f S?j('rli,j + ug.ink.j) dr “J’ TiTli dS =0 (20)
T St

for all admissible 7. The potential energy in a neighboring state (identified by the additional
stresses Sy, etc.) is given by

motm= I/ZJ’ (S?,+ Sij)(€g+6.j)d7‘f Ti(ui0+ v;)dS. 21
T Sr

The change in the total potential energy, =, in going from the equilibrium configuration to the
adjacent state, by eqn (17) and eqn (21), is then

w= f (st;ei,- +% ci,-k,ei,.ek,) dr - f Tw, dS. (22)
T St

In a similar fashion, and through the use of eqn (19), the change in the strain in passing to the
adjacent state may be written as

1 1.0 1.0 1
€ =2(Vij + i) F 23UV + 72Uk jVki T 3VkiUk,e (23)

Inserting eqn (23) into eqn (22) then yields

m=Vi+V,+V;+V, (24a)
in which
Vi =ﬁ Si(vi; +u‘,’.._.-v,,.,,~)d1-—LT T dS (24b)
V.= 1/2‘[ S VmiVm; A7 + 1/2[7 Ciin(Vis + Ul m )03 + U i0p;) AT (24c)
Vo= 12 [ Codtmamy + U) dr (24d)
Vem 118 | Conltmatna vtny) dr (24¢)

where V,, V,, V,, V, are the linear, quadratic, cubic, and quartic terms in the displacements, v,
respectively, of the change in the total potential energy. Since eqn (20) is valid for all admissible
m, we choose in particular that »; = v.. Comparison of eqn (20) with eqn (24b) results in

mw= V2+ V3+ V4.

As expected, there are no linear terms, since the basic state is one of equilibrium. The equilibrium
state is stable if = > 0 for all neighboring states, that is, if V>, > 0for all v; (because V,dominates V-
and V, for sufficiently small values of v). The critical, or bifurcation, state is reached ~.:en V.
becomes semi-definite, or equivalently, when

V2|min =0. (25)

That is, the problem is to find the displacement (or buckling mode) v which minimizes V., subject to
a suitable norm, and to let that minimum vanish.
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4. SOLUTION TO THE BUCKLING EQUATION

The quadratic terms in the change in the total potential energy which are given in eqn (24c),
can be rewritten as

2V,= f Ci,-k,v.-_,-vk,, dr +2J’ C.»ik;v,-,;u?n,kv deT
+J- C;;k,v,,.‘.'u?,.,,-ug,kvp,z dr +I ngm,ivm.i dr (26)

where by expanding the prebuckling stresses S; and displacements u as shown in eqn (7), eqn (26)
becomes

2Vo =AW, V) + A[B(,v)+2CP(, V)] + A [BO(V, v) +2C2(v, v) + D (v, v)] + - - - (27)

in which the quadratic functionals are given by
Ay, v)=J’T Ciati s d7
B™(v,v)= f ST o dr (n=1,2,..)
C™w,v) =J.T Cibiitoitmdr (n=1,2,..)
D‘"‘""(v,v)=f7 Cuavatd S Uupvp dr (myn =1,2,...). (28)

A convenient normalizing condition for the buckling mode v is
B®(v,v)=-1 (29

in which the negative sign is chosen so as to lead to positive values of A. Then, with the
introduction of the Lagrangian multiplier g through

Q=V:+1/2q[B(v,v)+ 1] (30)

we find that a necessary condition for minimizing V-, subject to the associated normalizing
condition eqn (29), is given by

8Q=A(,n)+A[B(v, )+ CW, n)+ C%x, V)]
+A[B®(v, )+ C?w, )+ C®(n,v) + D" (v, )]+ -
+gB (v, )=0 (31

for all admissible variations 5. In the development of eqn (31) we have made use of the symmetry
of the bilinear forms A, B, and D*"”; however C™ is not symmetric, nor is D™ for m# n
(D™ is needed if the expansion is to be carried out beyond A ®). Equation (31) represents a linear
eigenvalue problem, in which both the eigenvalue g and associated eigenmode v are clearly
functions of the load parameter A. It is reasonable to assume that this functional dependence on A
is regular near A =0, and that expansions of the type

v=vO+ AV AP 4.

3
q= o+ Aq:+A’qa+ - (32)

are therefore admissible. In eqns (32), the terms v*” and g, correspond to A = 0, that is, to the case
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in which no prebuckling deformations take place. The effect of the latter is incorporated through

the terms involving A to the first power and higher. Insertion of the expansion (eqns (32)) into eqn

(31) now leads to a power series in A, with each coefficient representing a system of equations

which has to be independently equated to zero. The first three coefficients (corresponding,
respectively. to A% A'. and A°) give rise to the following equations:

AVY )+ ¢oB vV ) =0 (33a)

A(Vm, n)+ qoBm(vm’ ) =—(1+ q;)B“’(V“”. n)~ C”)(V(m, n)- C”’(n‘ v (33b)

A(V(Zﬁq n) + q()B”)(V(Z), 1’ ) P (] + q])BH)(v‘”, n ) . C(l)(v(l). n ) _Cll)(n’ v(l)) _ B(Z)(V(O)’ n}
_ CHZ)(V((P)q n ) _ C(Z)(n. viO)) . D(LI)(V(O), 1’) _ qu(l)(v(O). 1')-

{33¢)
The problem is made definite by expanding eqn (29) in powers of A and by postulating
BV vy +1=0 (34a)
B, v")=0. (34b)
Equations (33) hold for all admissible . So by letting = v'* in eqn (33a), we obtain
ANV V) + ¢oB V" V) =0
which because of eqn (34a) may be written as
qo= ANV V). (35)

The eigenvector v and associated eigenvalue g, of eqn (35) is the buckling solution for the body
with initial displacements neglected. However, when g, is obtained in this manner, it renders eqn
(33b) singular. A solution will exist only if the right-hand side of eqn (33b) is subjected to a
suitable orthogonality condition. This condition is obtained by letting » = v in eqn (33a), by
letting n = v” in eqn (33b), and by subtracting the resulting equations, which yields

q1 — _] + zc( ”(V(O), v(O)) (36)

which is subject to the normalization of eqn (34a). Finally, following a similar argument, by
letting 5 = v'? in eqn (33a), and letting n = v'” in eqn (33c), and then subtracting the resulting

equations from each other, we obtain
q” — C(I)(V(O) V(“)+ C(l)(v(l) v(O))
+B(2)(v(0) v(O))+2C(2)(v(0) V(O))+D(l.l)(v(0) V(O)) (_;7)
subject as before to eqns (34).
It is noted that eqns (35) and (36) involve only the base function v*”. In contrast to q, and ¢,
however, the formula for g. (eqn (37)) involves also the function v'”, which is obtained by solving
eqn (33b). The latter now admits a solution since the secular term on the right side has been

removed through eqn (36). The solution, however, is not unique. In fact, let ¥" be a particular
solution; then, by virtue of eqn (33a), it is easy to see that

V(I):v(ll+av(0) (38)

is also a solution of eqn (33b), regardless of the value of «. The specific value of a to be chosen is
determined by eqn (34b), which, after substitution of eqn (38), and in view of eqn (34a), yields

a = B“)(v(m. vm). (39)
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We now return to eqn (31) and select n = v. When the resulting equation is compared with eqn
(27) and when eqn (34a) is taken into consideration, we obtain

V2|min = 1/2q = 1/2(q0+Aq1 +)\q22+ . ) (40)

in which the second equality follows from eqn (32). The bifurcation condition eqn (25) therefore
identifies the critical load parameter A.. as the root of the critical equation

q0+Aq1+A2q2+“':0. (41)

It is interesting to note that if the quadratic term in eqn (41) is deleted and if g, in eqn (36) is
approximated by ¢, = —1, then

AS=qo (42)

which represents the classical approximation and disregards the prebuckling deformations. A
better approximation is given by

)\(clr) = "CIO/CII 43)

while the inclusion of the quadratic term leads to

1
A‘f,’=2—(h[—qli\/(q.2—4qoqz)] (44)

in which the root has to be selected so as to let A Y approximate A%, In these formulas, the values

of qo, q:, and g, are given in eqns (35), (36) and (37), respectively.

S. DISCRETE ELEMENT FORMULATION
The development of the previous section follows closely the pattern set by Masur and
Schreyer[9]. In this section the equations will be converted into a form suitable for finite element
applications. To begin, we subdivided the domain 7 into n. subdomains, or finite elements, 7,
interconnected by nodes. The displacement fields are given in terms of shape functions ¢ ii/(A)

and nodal displacements Uy, M =1 to n, by

u = ¢LsUn = DnUn  (sumone, e =1ton.) (45)
where L is the connectivity matrix; upper case subscripts denote nodal variables and repeated
upper case subscripts imply a summation from 1 to n, the degrees of freedom of the discrete
system.

As is well known, the shape functions must be constructed so that if derivatives of order p
appear in energy expressions, then the lowest (p — 1)th derivatives are continuous both within
and across elements. In addition, the shape functions must be complete; a sufficient condition for
completeness is the capability of describing rigid body motions and a constant strain state,
Oden[10].

The same shape functions will be used for both prebuckling displacements and the buckling
mode. In the finite element formulation, these two displacement fields are then distinguished by
the nomenclature for the nodal displacements; Uy denotes the prebuckling nodal displacements,
while Vx denotes the buckling mode nodal displacements.

The first step in the analysis is the determination of the first and second order approximations
for the prebuckling displacements. These equations are obtained by considering a discrete form
of eqn (20). Inserting eqn (45) into eqn (20), we obtain

Ha f Sy (@, + Brena ens;Une) d — Hog f AT, dS =0 46)
T Sr
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where Hy are the virtual nodal displacements. The finite element counterpart of eqns (16) is
St;]) = ankl(DkM.lUM”)
S(UZ) = Cijkl(q)kM.IUM(Z) + ]/2(DpM,k UM“)(DpN,tUNm)- (47)

Expanding the stresses and displacements as given by eqn (7), we obtain

HMf [®ir; +q)kN.ichM.](/\UN(”+)\ZUN(Z))]

X [AC i ®rp i Us™” + A2C il Doy Us® + 112D @, U, " U] d7 — Hy f AT:i®in dS = 0.
St
(48)

Since each coefficient of this polynomial in A must individually vanish and since the values of Hx
are arbitrary, it follows that

KU = Fu” (49a)
K Us® = B (49b)
where
K& = f CisiDore Durs d7 = K5 (50)
Ful¥= fs T,®u dS 51)
F? = —1/2J’ Cu@imit ot d7 = J: Cra®pmatt poctt 5 dr. (52)

The matrix K% is the linear elastic stiffness matrix, so eqn (49a) is the standard linear equation
of matrix structural analysis. Equation (49b) is identical to eqn (49a) except that the right hand
side includes the “pseudoforces’ corresponding to the first approximation of the nonlinear terms.

The second step in this procedure is the determination of the buckling mode expansions, v

and v'”, by eqns (33). For these purposes, we note that according to eqn (28)
AV, )= HuK$A VN (53)
while
B(v.n) = HuK ik Vn (54)
where
K= f SPBen Brans d. (55)

The matrix K'ex is the well known initial stress matrix, Przemieniecki[11].
From the arbitrariness of Hy and the above equations, it follows that the discrete form of eqn
(33a) is
KSRV + qu(ISIl'VN(O) =0. (56)

This is the standard eigenvalue problem for the determination of the buckling load with
prebuckling displacements neglected.
In a similar manner, it can be shown that the discrete form of eqn (33b) is

(E) vy ) G I
KunVy +q0K(MYleN‘ =

-(1+ CII) f S:;”U ;:,)i)q)kM,j dr - J’ anklu (rrll?k(v:.(})q)mM.I + v(r:l)?l(biM'i) dr (57)
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where ¢ has been evaluated by eqn (36). These linear algebraic equations, like their continuous
counterpart, are singular. If gois a single root of the characteristic equation, eqn (56), then the rank
of this system of algebraic equations is n — 1, and its solution may be expressed in terms of a single
parameter by an elimination procedure. This parameter is then evaluated by the normality
condition, eqn (34b), which in finite element form is

KSR V@V =0. (58)

The equations developed here can be simplified for beam elements in two dimensional
structures by assuming that in the buckling mode the beam elements are inextensible, i.e. that the
buckling mode consists primarily of rotations and translations of the elements. These
simplifications will be developed in the following.

Consider an Euler-Bernoulli beam of symmetrical cross section with its neutral surface
coincident with a local x-axis. The axial displacements in a cross section are then given by

Ux = ﬁx - yvy,x (59)
in which . and v, are functions of x alone and where the bar designates the axial displacement
of the midplane, similarly for u. Both o, and v, are expanded in a power series in A.

If Poisson’s ratio is taken to be zero, then the pertinent terms in eqn (28) can be simplified as
follows

COW®,v®) = EA J' 590 %u®, dx
L
CPW®, ) = EA f %0 dx
COWD,v®) = EA j 50O dx
L
D™, v®) = EA L [o$2uS) dx
CPv®, v®) = EA L Q0P dx. (60)

Here the integral extends over the length of the element. Repeated use is made of the fact that for
a beam, the only quadratic term which need be retained is rotational; the quadratic extensional
terms can be assumed to be negligible by comparison. The additional axial strain during buckling
is given through eqn (23) as

€ = Dxxt Uyalyx (61)

where the second order terms in v have been omitted. The expansions for u and v, eqns (7) and
(32), respectively, yield

€ = Dor+ ABE A+ u Do)+ (62)

Hence, if we assume that the extension of the neutral axis in the buckling mode vanishes, then
each coefficient of the above polynomial in A must also vanish, so that

Tex=0

S 4@
Ux.x + u y-xv X T 0

(63)

these conditions, when applied to eqn (60) yield

COW?, v?) = CON®, v?P) = CO®, v®) =0

1SS Vol 11 No 9—G



1032 L. W. GLAUM et al.
CU V) = ~AE [ o dx. (64)
B

By using the above, it can be shown that eqns (36) and (37) reduce to

g = —

G = B2 ). (65)

The axial thrust is the only contribution to S; retained in B and the initial stress stiffness, K Gn.

The critical load is then again given by eqn (44). The effect of the prebuckling displacements in
this case enters entirely through the term S in B@™, v'”), which are the stresses associated
with the second order approximation to the prebuckling displacements.

The procedure described here has been programmed for beam elements in two dimensional
structures, A standard beam element with a cubic transverse and linear axial displacement field
was used; the displacement field and elastic and initial stress stiffness matrices may be found in
Przemieniecki[11]. A flow chart of the procedure is given in Fig. 1.

Solve egns {49a) for prebuckiing displacements U

Compute pseudo forces £,% (U,)
Solve egns (49b) for prebuckiing displucements U

]

Find eigenvalue ¢, and eigenvector KO of eqn(56)

]

Evaluate ¢, ¢, by ean (65)

I

Find X, by ean (44)

. by egn (52)

Fig. 1. Flowchart of computational procedure for beam elements in two dimensional structures.

6. RESULTS
The planar buckling of a shallow circular arch was chosen as the illustrative example. The
dimensions and nomenclature for the arch are shown in Figure 2. For a half-angle of a = 10°, the
series of problems indicated in Table 1 was solved. The entire arch was modelled by rectilinear

v oy P UNIFORM

Fig. 2. Clamped circular arch under uniform load.
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Table . Results for critical load for arch

Geometry Results Previous Results
2R A2 No. Ao}z x 100 Masur, E., Exact
Radius H Rise Span| A = depth Ay, Euler (second approx.) | Elem. Ao Schreyer, B.[%1 | Schreyer, V.[12]
790" 12" 274" 6 2.26 1.87 1c 17.3 1.96 1.67
1
#
:
1050 16 365 8 2.17 1.94 5 § 1.98 1.86
1.92 10 11.5 i
1.92 15 E[
1.92 20 i
1.92 25 I
1.88 50 l
T
1315 20 457 10 2.12 1.95 10 8.0 q 1.99 1.93
1580 24 549 i1z 2,10 1.97 10 6.2 2.01 1.97
1840 28 639 14 2.08 2.00 10 4.1 2,02 1.99
i

elements of equal arc length. The load is normalized by

__[2H\(12R®

according to Schreyer[12]. The geometric parameters for all test cases were chosen so the mode
of instability was asymmetric. As can be seen from Table 1, including the effect of the
prebuckling displacements reduces the bifurcation load as compared to the Euler solution in all
cases. This effect is more substantial for the shallower arches. At large values of A, the proposed
technique is in good agreement with the exact solution. For shallower arches, the agreement is
not as good. This seems reasonable, for the magnitude of the displacements before buckling
approaches the rise of the arch. The correct description of the nonlinear fundamental path
becomes even more important for very shallow arches and a partial series expansion for these
displacements may not be sufficient. The disparity in the results may be attributed to the fact that
unlike Masur and Schreyer[9]. in this investigation no assumption was made as to the constancy
of the individual contributions of axial thrust given by eqn (7). Although the first order
prebuckling axial force, which is the solution to eqn (49a), varies by less than 0-1 percent over the
span, the total axial force, including second order terms, was found to vary along the span by 2 to
6%, depending on the shallowness of the arch.
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